BC calculus Chapter 8 heview

At t=0 a particle starts at rest and moves along a line in such a way that at time t its acceleration is $24t^2$ feet per second per second. Through how many feet does the particle move during the first 2 seconds?

- (A) 32
- (B) 48
- (C) 64
- (D) 96
- (E) 192

Water is pumped out of a lake at the rate $R(t) = 12\sqrt{\frac{t}{t+1}}$ cubic meters per minute, where t is measured in minutes. How much water is pumped from time t = 0 to t = 5?

- (A) 9.439 cubic meters
- (B) 10.954 cubic meters
- (C) 43.816 cubic meters
- (D) 47.193 cubic meters
- (E) 54.772 cubic meters

The rate of change of the altitude of a hot-air balloon is given by $r(t) = t^3 - 4t^2 + 6$ for $0 \le t \le 8$. Which of the following expressions gives the change in altitude of the balloon during the time the altitude is decreasing?

2003 BC 82 Calc

- (A) $\int_{1.572}^{3.514} r(t) dt$
- (B) $\int_0^8 r(t) dt$
- (C) $\int_{0}^{2.667} r(t) dt$
- (D) $\int_{1.572}^{3.514} r'(t) dt$
- (E) $\int_{0}^{2.667} r'(t) dt$

The region bounded by the x-axis and the part of the graph of $y = \cos x$ between $x = -\frac{\pi}{2}$ and 13 $x = \frac{\pi}{2}$ is separated into two regions by the line x = k. If the area of the region for $-\frac{\pi}{2} \le x \le k$ is three times the area of the region for $k \le x \le \frac{\pi}{2}$, then k =

- (A) $\arcsin\left(\frac{1}{4}\right)$ (B) $\arcsin\left(\frac{1}{3}\right)$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

Let R be the region enclosed by the graph of $y = 1 + \ln(\cos^4 x)$, the x-axis, and the lines $x = -\frac{2}{3}$

and $x = \frac{2}{3}$. The closest integer approximation of the area of R is

1998 36 80 calc

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

A region in the plane is bounded by the graph of $y = \frac{1}{x}$, the x-axis, the line x = m, and the line 1969 BC 25 x = 2m, m > 0. The area of this region

- (A) is independent of m.
- increases as m increases.
- decreases as m increases. (C)
- decreases as m increases when $m < \frac{1}{2}$; increases as m increases when $m > \frac{1}{2}$. (D)
- increases as m increases when $m < \frac{1}{2}$; decreases as m increases when $m > \frac{1}{2}$. (E)

The area of the region bounded by the lines x = 0, x = 2, and y = 0 and the curve $y = e^{x/2}$ is

- (A) $\frac{e-1}{2}$
- (B) e-1 (C) 2(e-1) (D) 2e-1

The base of a solid is the region in the first quadrant enclosed by the graph of $y = 2 - x^2$ and the coordinate axes. If every cross section of the solid perpendicular to the y-axis is a square, the volume of the solid is given by

(A) $\pi \int_{0}^{2} (2-y)^{2} dy$

1987 BC 87 Calc

- (B) $\int_{0}^{2} (2-y) dy$
- (C) $\pi \int_{0}^{\sqrt{2}} (2-x^2)^2 dx$
- (D) $\int_{0}^{\sqrt{2}} (2-x^2)^2 dx$
- (E) $\int_0^{\sqrt{2}} \left(2 x^2\right) dx$

The area of the region enclosed by the graphs of $y = x^2$ and y = x is

1993 BC1

Colc

- (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{5}{6}$

The base of a solid is the region enclosed by the graph of $y = e^{-x}$, the coordinate axes, and the line x = 3. If all plane cross sections perpendicular to the x-axis are squares, then its volume is 1985 BC 38

- (A) $\frac{\left(1-e^{-6}\right)}{2}$ (B) $\frac{1}{2}e^{-6}$ (C) e^{-6}

- (D) e^{-3} (E) $1-e^{-3}$

What is the volume of the solid generated by rotating about the x-axis the region enclosed by the curve $y = \sec x$ and the lines x = 0, y = 0, and $x = \frac{\pi}{3}$?

1993 BC 30

(A) $\frac{\pi}{\sqrt{3}}$

calc

- (B) π
- (C) $\pi\sqrt{3}$
- (D) $\frac{8\pi}{3}$
- (E) $\pi \ln \left(\frac{1}{2} + \sqrt{3} \right)$

The region in the first quadrant between the x-axis and the graph of $y = 6x - x^2$ is rotated around the y-axis. The volume of the resulting solid of revolution is given by

1985 BC 35

(A)
$$\int_0^6 \pi (6x - x^2)^2 dx$$

(B)
$$\int_{0}^{6} 2\pi x (6x - x^{2}) dx$$

(C)
$$\int_0^6 \pi x (6x - x^2)^2 dx$$

(D)
$$\int_0^6 \pi (3 + \sqrt{9 - y})^2 dy$$

(E)
$$\int_0^9 \pi (3 + \sqrt{9 - y})^2 dy$$

1993 BC 19 Calc

The shaded region R, shown in the figure above, is rotated about the \underline{y} -axis to form a solid whose volume is 10 cubic units. Of the following, which best approximates k?

- (A) 1.51
- (B) 2.09
- (C) 2.49
- (D) 4.18
- (E) 4.77

Which of the following integrals gives the length of the graph of $y = \tan x$ between x = a and 1969 BC 43

$$x = b$$
, where $0 < a < b < \frac{\pi}{2}$?

$$(A) \quad \int_a^b \sqrt{x^2 + \tan^2 x} \, dx$$

(B)
$$\int_{a}^{b} \sqrt{x + \tan x} \, dx$$

(C)
$$\int_a^b \sqrt{1 + \sec^2 x} \, dx$$

(D)
$$\int_{a}^{b} \sqrt{1 + \tan^2 x} \, dx$$

(E)
$$\int_{a}^{b} \sqrt{1 + \sec^4 x} \, dx$$

The length of a curve from x=1 to x=4 is given by $\int_1^4 \sqrt{1+9x^4} dx$. If the curve contains the point (1,6), which of the following could be an equation for this curve?

2003 BC 15

(A)
$$y = 3 + 3x^2$$

(B)
$$y = 5 + x^3$$

(C)
$$y = 6 + x^3$$

(D)
$$y = 6 - x^3$$

(E)
$$y = \frac{16}{5} + x + \frac{9}{5}x^5$$