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%@’)'{"-2,%" \//ka,i Sets of real numbers, such as those graphed in Example 4, can be convemdently
! otatio] described using interval notation, For example, instead of writing {x| —% £ x < 31,

o, we can simply write [~ 3). Notice that we are following our graphing copvention of
O epiie eavele ~osing 7 parenthesis to indicate that an endpoint of the interval is not incindsd and 2
s (3 d clecle ovbracket to indicate that an endpoint is incinded. The set {x]x = 3} can be wrtten as
{3, ). Note thatthe symbol =" (infinity) does not represent a real number but rather
indicates that the interval includes all points to the right of 3. Table 2 summarizes the

ning types of intervals.

TABLE 2 Inierval notation

EXAMPLE 5 B Using Interval Netation

Write the given set using interval notation and sketch its graph.

a (x]|-7=x<2) b, {s]s < V3]
SOLUTION
2 [=7,2) bt Sy b
i B e w5 d w3 W2l O 203 4
V5
b, (—=,V3) st e .
4} 1 Z 3 4

EXAMPLE 6 & Converting from Interval Notation to Set-Builder Notation

Express each of the following sets using set-builder notation.

a. (2,5] b. (=e,3) c. [—4, =)
SOLUTION
2. {x|2 <x=35 . b {xfx<3) e {x|xr=z= -4}




Polynomjalj «  Selve polynomial and rational inequaliries,

and Rational ‘We will use a combination of algebrzic and graphical methods to soive
s polynomial and rational inequalities.
Inequalities |

o . o Palae . . . !
_ Polynomiat inequalities _ . |
' g Just as a guadratic eguarion canm be writwen-in the form ax® + bx +

= 0, 2 guadratic ineguality can be wrirten in the form ax* + bz +
& 0, where 3 is <<, >, =, 0r = Here are some examples of quadraric

nequalities:

o N

e

St e 2x— 5>,  —ixld 4z -7 =0

Quadraric inegualities are one 1ype of polynomial ineguality. Other
examples of polynomial inegualities are

—2xtd w37, ix+ 420, end 47 -2 P34 T .
P . :
| imi=x=~x 2r When the inequality symbol i 2 polynomial inequality is replaced thb
U “\ an equals sign, s related equation is fomed. Paiynama‘al 1'm:qua11tles i
2ozl Af - x>0 can be =asily solved once the related equation has been soived. |
{(~1,0) 0.0 /1,0 ;
7 R EXAMPLE 1 Solver 2* = x> Q.
p” = |
Vb }‘ <t Solution  'We are asked to find all x-values for which »* — » > . To lo-
RN FE cate these values, we graph fix) = x* — x Then we note that whenever
" the function changes sign, its graph passes through an x-intercept. Thus

| to solve x=° — x > 0, we first solve the related equation x* — x = 0 w
find all zeros of the function:

2=
- 1) =0
x(z 4 Di{x = 1) = 0.

The zeres are —1, 0, and 1. Thus the z-intercepts of the graph ars {(—1, 0),
{0, 0}, and (1, 0), as shown in the figure at left, The zeros divide the
x~2Xis into four imtervals

{_w) '_l)a (wli G}! (Gz 1): and (1: @),

To solve 2 polynomizl

inequalivy: . ~i ¢ : *

1. Find an eguivaient
inequality with 0 on For all x-values within a given interval, the sign of ° — x must be
one side, . either posirive or negative. To determine whick, we choose a test value for

2. Solve the related ' x from sach imtervai and find f{x). We can use the TABLE feature set in ASK
polynomial equation. mode to determine the sign of flx) in each interval {see the table at left).
™ e We can aiso determine the sign of f(x} in each interval by simply looking

3. Use the soiutions to gn of fl) b interval by simply o

e .. i at 2 f the function.
divide the x-axis into ' the graph of ¢
intervals, Then select

2 test vaive from sech | bvreEgval TEST VALUE

SiGN OF fix) :
‘ interval and determine e
! the polynomial's sign {mem, =1 f-2 = —¢ Negative
| oft the interval, (=1, 00 fl—0.5) = 0373 Pesitive
4. Determine the ; {0, L flo.s) = —0.375 Negative
intervals for which =) fioy =6 Positive

the ineguality is

satisfied and write
intzrval notation or —
set-builder notation :
| for the solution set.

} Include the endpoints
: of the intervals in the

& 3
H

Since we are solving %° — x > (0, the solution set consists of only two of
the four intervals, those in which the sign of f{x) is posirive. We see that

solution set if the the solution set is (—1L, 0) U {1, ®), or {x]—1 < x < D grx > 1.

I

i

i Lsequality symbol is |

| = or = |
\

Shown in the box at left is a method for solving poiynomial
- [T | E

11ma.%ugm{{%l&6ﬁ




SECTION 3.5 = POLYMOMIAL AKD RATIDNAL INEQUALITIES

[
~¥
ey

Rational Inegualities

Some inegualities involve rational expressions and functions. These are
called rational inequalities. To solve rational inequalities, we need to
make some adjustments to the preceding method.

T AT e = x —_— - x ‘-:-. ;2” R
EXAMPLE 3 Solve: ——— = -
n o+ 4 X =3

Solution ‘We first subtract (x ~ Z)/(x — 5) in order to find an equiva-
lent inequality with 0 on one side:

x =3 x+ 2

Algebraic Solution

We icok for all values of x for which the related function

2

x =3 x +
f(x)= ‘ -

x T+ 4 x— 5

|

%

i is not defined or is 0. These are called critical values.

i A look at the denominators shows that f{x) is not defined for
|

]

i

:

|

]

r= —4and x = 5, Nex1, we salve flx) = 0
x—B_x-’rZ_O
x+4 =35
x =3 x4+ 2

{x + 4){x ~ 5) - ~ | = (x + 4){x~5)-0
: x4 x5
i
| (x-—B}(x—B)—*{xﬁé){x-iwz)-"O
; (F=Bx+15) - (#*+6x+8 =0
—ldx+7 =0
"
I\-mzl

| The critical values are —4, 3, and 5. These values divide the x-axis
into four intervals:

{—oo, —4), ("4, 15}, (%, 5), and (3, ).

I & H ' ' s ! : : i
T T

—5 =g =3 =2 -1 0 1 2 3 4

1
N
P
(G SEY

We then use a test value to determine the sign of f{x) in each
interval.

- -
|
i

|

=) l [

F
[

|

|
v
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!
=
Bk
Ly =
18
ur
o
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CHAPTER 3 »  POIYNGANAL AND RATIONAL FUNCTIONS

i Funcrion values are posizive in the intervals (—e, ~4) and (% , 5l
i : : : ; ; )]

] Since f(%) = 0 and the ineguality symbal is 2, we know that § must
{ be in the solution set. Note that since nezither —4 nor 5 is1in the

i domain of f, they cannot be part of the selution set.

! The solution set is {—, —4) U [%, 5)

Sraphica! Soiution
We graph
x=3 x+2
! Fers 4 zx=~5
in the standard window, which shows its curvature,
=3 El_z_ :

x+4 x—3
106

=16

By using the ZERD fzature, we find that 0.5 is'a zero.
We then look for vaives where the function is not defined. By
examining the dencrminators £ + 4 and x - 5, we see that f(z) is

not defined for x = —4 and x =3,
The critical values, where y is either not defined or 0, are —4,
.5, and 5.

The gravk shows where y 15 positive and where it is negative.
Mote that ~4 and 5 cannot be in the soiurion set since y is not
defined for these vaiues. We de inciude 0.5, however, since the
inequality symbol is = and f{0.5) = 0. The sclution set is

‘, (==, —4) U (0.5, 5). -

The following is 2 method forsolving rational inequaliries.

To solve 2 rational ineguality;

2. Change the inequality symbol to an equals sign and solve the

1

]

1. Find an equivalent inequality with 0 on one sige. {
related eguation.

|
b b b : t
. 2. Find values of the variable for which the related rational i

function is not defined. |

4. The numbers found in steps (2) and (3) are called critical
vajues. Use the critical values to divide the x-axis into
imtervals, Then test an x-valus from each interval 1o
determine the function’s sign in that interval.

5. Select the intervals for which the inegualiry is satisfied and
write interval potation or set-builder notation for the solution
set. 1f the inequality symbol is = or =, then the solutions to
step (2) should be included in the solution set. The x-vaines
found in step (3) are never included in the solution set.

It works well 1o use 2 combination of algebraic and graphical meth-
ods to soivepolynomial and-tationalinegualities. The algebraic methods
give exact numbers for: the critical values, and the graphical methods
aliow us to see easily what intervais satisfy the inequality.




Fractional Exponents/Logarithms/Log Properties

~-actional Exponents

oL (LY (1Y
RS J L5/ 23
53 |

EXAMPLE 1 B Computing Logarithms

Compute zach of the following quantitias.

= log, 8 b. ‘logu;Q

SOLUTION s s

a. We nead 1 find the power to which 2 must be raised in order 1o get mce
7‘—8“)“:8-3 ‘ . ' ..

b, Weare mti._stau in Anding the power to which 1 must be raised in order to get e
Sines 1372 =9, jog,, 0 = —2

From the definidor of logarithm, y = log, z if and only if & = x ip other words,
for every logarithmic squaton, thers is z corresponding exponential eouation, and vics
versa, This equivatence will prove to be 2 useful ool both for solving eguarions in-
volving logarithms and for deriving logarithmic identities.

Eguivalence of Exponential [
and Logarithmiz Eguations

The foliowing exampies iliustate the squivalence of exponential and iogarithymc
eguafions, '

EXAMPLE 3 B Writing Logarithmic Equations a5 Exponential Equations

Vfrit= an equivaicent exporental equation for szch of the following logarithmic

sguations, ’
2. logy 1000 = 3 B. log.100 = 2.1 o lomh = 12
SOLUTION
2. 107 = 1000
B. x™ =100
e 3=
[ A
” >~ . ored O




Properties of Common and [
Natural Logarithms

Computing Common and Natural Logarithms
Compute gach of the foliowing guantiies, usihy z calculator as necsszary,
3. log 1000 B b, imy

SQLUTION

2. DBecause the base ism’t given, it is understood to ke 10. Thus, we must find
the power fo which 10 is reised in order to ger 1000. Since 10° = 1000,
log 1000 = 3, :

b. Here the base is e. We must find the power 1o which ¢ is raised in order to get
Ve Sines e™' = Ue, Inflje) = ~1.

EXAMPLE 4 B Simpiifying with Logarithmic Identities

‘Express 2lna —lny + 6inz as 2 single logarithm.

SOLUTION

dox—my+ékmzr=E" —lny + InS ldentity 3

2
= In Lj + In(zf) Ientity 2

b

I’Zs

= 1n\---— Idennry |

¥

Eguations mvolving one or more logarithmic expressions are called logarithmic eaua-
LOGARITHMIC tions. Many logarithmic squadons can be solved by converting to exponental sgue-
- m—— . - i 12 .
EQUATIONS  tons. For example, the equation

is sguivalant o

This solution could also be found by expenentiating both sides of the orginal eguanon
as follows:

11

et = ¢ Exponendzting both sides

[E2

=« Using the propeny oo =




Occasionally, it is desirable 1o use two or more formulas to define a function. Consider,

. PIECEWISE-DEFINED  f5 example, the foncrion f defined by
FUNCTIONS ;

oy = {

2x+ 3, x> ~1 5
This piecewise definition indicates that for an imput value x less than or equal o —1,
the output value is —x. For an input value x greater than ~1, the output value is 2x +
3. Thus, f(—4) = —(—4) = 4, whereas f(1) = 2(1) + 3 = 5. Some additional ir- -
put—output pairs are given in Table 8. Notice that for eack x.= —1, f{x) is computed .

TAEBLEE )

A +3=3

AL 35

LA +3=T |
" + using —x, whereas for x > 1, f(x) is computed using 2x + 3. The graph of f is obtained
by plotting the line y = —xforx = —1, and the fine y = 2z + 3 for x> —1, as shown

FIGURE 88 in Figure 88,

EXAMPLE 4 B Evalnating and Graphing a Piecewise-Defined Function
Evainate the function

x+1, x<2
J‘(I)={

-4 x=2

at the x-values given in the following table, and then skeich its graph. _
| I I S

SOLUTION In order to compute 2 function value for a given x, we simply nots
whether x < 2 or x = 2 znd use the corresponding “‘piece”” of the function definition.
For exampie, to compute f(—1), we note that —1 < 2, and s0 we use the x + 1 piece
of the function to obtain F(—1) = (—1) + 1 = 0. Similarly, since 3 = 2, we compute
£(3) using the x* — 4 pizce, obtaining £(3) = (3)* — 4 = 5. The remaining output values
are computed in Table 9. The graph of f is obtained by plotting the iney = x -+ 1 for
x < 2 and the parabola y = x* ~ 4 for x = 2, as shown in Figure 89. Notice that an
open circle is used at the point (2, 3) o indicate that the point is not included on the
graph, and a closed circle is used at {2, 0} to indicate that this point is included.

TABLE®

trx <2 =G dn

FIGURE B9

WARNING! A piecewise-defined function 1z one fupcton with several \
pieces, not several different functions. Thus, for & given input valee x, the cc}

| respondine output vatue fix) is computed using onlv one of the pleces.



EXAMPLE 9

DOM AN

=
i

# Finding Domain

Find the domam of g{r) =

- SOLUTION  All input values of ¢ are valid except those that lead o 2 zero in the
fenomimator. To determine whers this occurs, we set 2 - 1 =0 and solve ior:
F=-1=0
+De-1 =
HESES ]
So the domain of g is the set of all real numbers 7 except —1 and 1. This st can be
written in set-nuuclcr potation a5 {¢{r # ~1, 7 # 1}. In interval notadon, we write
(=ee, =1 U (=1, 1) U (L =) :
EXAMPLE 10 B Fipdieg Domain
Find the domain of Alx) = Vix — 3,
SOLUTION  Since we are only considering values of x for which A(x) s real, the
vald input valpes of x ars those for which 2x — 3 2= 0. Solving this inear megualin
for x yislds x = % Thus, the domain. of £ is [3, =).
. X ' A rational fonction is 2 functon of the form
RATIONAL FUNCTIONS ‘ o) = plx)
ez

whers p and ¢ are pelynomiais. Examples inzinde

2.>:+
and A =
o4 s =3

r3

g =

as weli gs all poivnormal functong, such as f{x) = x* + 3x, where the acnomummmg
assumed t be 1. In this secrion, we only consider muuaal funcnons in lowest e
that ig, rat'zonal functons fx) = piz)g(x) for which plx; and g(x) have o CD"nmur
factors, See Exercise 62 for a discussion of rational funcdons that are pot in icvme
12TEs,

DOMAIN AND ZEROS

Domain of a Rational Function [0

Singe a rational funzdon f is construcied from polynomizis p and g, it is not surpnxmé
that key fearures of f-its domain, z-mmterceprs, end behavier, and so forth——prove ff
be closely tied to the behaviors of these polynomials, In paricuiar, since f(x)
plaigixs, fix) is defined only whers both p(x) and glx) are defined and whers
denominator g(x) 1s nonzero. Thus, becauss polynomials are defined for all real nu
bers, the domain of a ranonal funciion is found by excluding the zeros of the aoivnorma.
in the denominater,

ssnch that g(x)# 0.

We've seen thal zeros of the denominaior ¢ detsrrnine the dornain of . On ID~
other hand, since a fracdon is only zero when its numerator is zero, the zeros ax'v
correspond 1o the zeros of IS numerator,

i e i I : Lo oo s E 0

i

Zeros of a Retional Funciion L] if f{x) = p(:)/q\.r) g & rat:onaz mn"tmn m lew'=st'tcrm's,. tnc:\ floy = 0if azid?

SUWY EN Ty Voot 4

anlv ¥ plx) = 0

®



HORIZONTAL ASYMPTOTHES

| Determine the borizontal asympiotes using the thres cases below,
!
|

Case 1. Dezree of the mumerator is iesg than the-degres of the denominator. The asvmprote is y= 0.
o o

1 : X . . .
Exzmple: y=o— {As % becomes very large ar very negauve thevaiue of this function will }
x—1

e

approack (). Thusthereds a norizontzl asyvmptote at y=0.

Case I1, Degree of thenumerator is the seme asthe degree of the denominator. The asymptote is theratio of 5
- the lead coefficients. o ' ' -
: 250+ x=1

Exmaple v= (As % becomes very large or verynegauve the value of this function will

-~ g
3T 44

approach 2/3), Thus there is a horizontal asymprote at y =

L]t

| CaseYIL Degree of the numerator is greater than the degree of the denomunator. There is no horizontal

| asympiote. The function increases without bound. (Ifthe degree of the numerator is exactly 1 mors
1 +than the degree of the depominator, then there ex181s & slant asyrmpioe, which is determined by long
& division. )

1

"‘-.-2 ! 1
Al S

Exampic: y= (As ¥ becomes very large the vaiue of the function will conmnue to Inerease

| _ Sx—3 ‘ |
l and as % becomes very negative the valus of the fimetion will also become more megative). |

| Determine the vertical asymntotes for the function. Set the denominator equal to zero to find the x-vaiue for
1 which tie function is undefined. That will be the vertical asymptote given the numerator does not equal 0 also
| (Remember this is called removable discontinuity).
Write & vertical asymptotes as a line in the formx = :
v 1€ :1 1
i VI —
TS il u-z
i | 3{5
5 Example; Find the vertical asymptote of y = 2 . Jf o
! o i ;E
\ . . h . - i ‘
. Since when x =2 the function is in the form 1/0 1, i'a\ ,
1 Lt - " Lt b i
| then the vertical line x =2 is 2 vertical asymptote KL TS
of the function. ' RN Y
; ' “y=0 Y
| |
| N
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