Triple Integrals in Cylindrical Coordinates

$$\int \int \int_D f(r,\theta,z) dV = \int_{\theta=\alpha}^{\theta=\beta} \int_{r=h_1(\theta)}^{r=h_2(\theta)} \int_{z=g_1(r,\theta)}^{z=g_2(r,\theta)} f(r,\theta,z) dz r dr d\theta.$$

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$

$$r^2 = x^2 + y^2$$
, $\tan \theta = y/x$.

1. Evaluate
$$\iint_E 4xy dV$$
 where E is the region bounded by $z = 2x^2 + 2y^2 - 7$ and $z = 1$

2. Evaluate $\iint_E e^{-x^2-z^2} dV$ where E is the region between the two cylinders $x^2 + z^2 = 4$ and $x^2 + z^2 = 0$ with $1 \le y \le 5$ and $z \le 0$

3. Evaluate $\iint_E z dV$ where E is the region bounded by x + y + z = 2 and x = 0 and inside the cylinder $y^2 + z^2 = 1$

4. Use a triple integral to determine the volume of the region below z=6-x, above $z=-\sqrt{4x^2+4y^2}$ inside the cylinder $x^2+y^2=3$ with $x\leq 0$

5. Evaluate the following integral by first converting to an integral in cylindrical coordinates.

$$\int_{0}^{\sqrt{5}} \int_{-\sqrt{5-x^2}}^{0} \int_{x^2+y^2-11}^{9-3x^2-3y^2} 2x - 3y \, dz \, dy \, dx$$