AP Calculus **Derivatives of Inverse Functions HW** Name

Show all work for each problem.

х	f(x)	g(x)	f'(x)
-4	0	<u>-9</u>	5
-2	4	-7	4
0	6	-4	2
2	7	-3	1
4	10	-2	3

The table above gives values of the differentiable functions f and g, and f', the derivative of f, at selected values of x. If $g(x) = f^{-1}(x)$, what is the value of g'(4)?

(A)
$$-\frac{1}{3}$$

(B
$$-\frac{1}{4}$$

(C)
$$-\frac{3}{100}$$

(A)
$$-\frac{1}{3}$$
 (B) $-\frac{1}{4}$ (C) $-\frac{3}{100}$ (D) $\frac{1}{4}$ (E) $\frac{1}{3}$

(E)
$$\frac{1}{3}$$

$$x = 4$$
 at -2

$$g'(4) = \frac{1}{f'(-2)}$$

$$= \frac{1}{4}$$

Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?

(A)
$$\frac{1}{13}$$

$$(B) \frac{1}{4}$$

(C)
$$\frac{7}{4}$$

(B)
$$\frac{1}{4}$$
 (C) $\frac{7}{4}$ (D) 4 (E) 13 $8'(2) = \frac{1}{f'(8(2))}$

$$f'(x) = 3x^2 + 1$$

$$f'(1) = 3(1)^2 + 1$$

$$\delta_{1}(s) = \frac{\xi_{1}(1)}{1}$$

Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?

$$(A)$$
 $-\frac{1}{2}$

$$x=3$$
 at 6

(B)
$$-\frac{1}{8}$$

$$g'(3) = \frac{f'(6)}{}$$

(C)
$$\frac{1}{6}$$

 $=\frac{1}{-2}$

- (D) $\frac{1}{3}$
- (E) The value of g'(3) cannot be determined from the information given.

The functions f and g are differentiable, and f(g(x)) = x for all x. If f(3) = 8 and f'(3) = 9, what are the values of g(8) and g'(8)?

(A)
$$g(8) = \frac{1}{3}$$
 and $g'(8) = -\frac{1}{9}$

$$g(8) = 3$$

(B)
$$g(8) = \frac{1}{3}$$
 and $g'(8) = \frac{1}{9}$

(C)
$$g(8) = 3$$
 and $g'(8) = -9$

$$x=8$$
 at 3

(D)
$$g(8) = 3$$
 and $g'(8) = -\frac{1}{9}$

(E)
$$g(8) = 3$$
 and $g'(8) = \frac{1}{9}$

$$g'(8) = \frac{1}{f'(3)}$$