No calculator, unless the question says "Calc" in top right corner, - For what value of x does the function $f(x) = (x-2)(x-3)^2$ have a relative maximum? 1993 AB 15 calc - (A) -3 - (B) $-\frac{7}{3}$ (C) $-\frac{5}{2}$ - (E) $\frac{5}{2}$ $$f'(x) = (x-3)(3x-7)$$ $$x = 3, \frac{7}{3}$$ $$0 \text{ and derivative test}$$ $$f''(x) = (6x-1)(6x-1)$$ $$f''(3) > 0 \qquad f''(7/3) < 0$$ - If g is a differentiable function such that g(x) < 0 for all real numbers x and if 1998 AB89 2 $f'(x) = (x^2 - 4)g(x)$, which of the following is true? Calc - (A) f has a relative maximum at x = -2 and a relative minimum at x = 2. - B f has a relative minimum at x = -2 and a relative maximum at x = 2. - (C) f has relative minima at x = -2 and at x = 2. - (D) f has relative maxima at x = -2 and at x = 2. - (E) It cannot be determined if f has any relative extrema. $$f'(x) = (x^2 - 4) g(x)$$ $$x = \pm 2$$ $$-2 \quad 2$$ min max - The graph of a function f is shown above. Which of the following statements about f is false? - (A) f is continuous at x = a. - (B) f has a relative maximum at x = a. - (C) x = a is in the domain of f. - (D) $\lim_{x\to a^+} f(x)$ is equal to $\lim_{x\to a^-} f(x)$. - (E) $\lim_{x \to a} f(x)$ exists. The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b? - (A) f only - (B) g only - (C) h only - (D) f and g only - (E) f, g, and h A point moves on the x-axis in such a way that its velocity at time t (t > 0) is given by $v = \frac{\ln t}{t}$. At what value of t does v attain its maximum? - (A) 1 - (C) - (D) $e^{\frac{3}{2}}$ There is no maximum value for v. (E) $$v'(t) = \frac{(t)(1/t) - \ln t(1)}{t^2}$$ $$0 = \frac{1 - \ln t}{t^2}$$ The absolute maximum value of $f(x) = x^3 - 3x^2 + 12$ on the closed interval [-2,4] occurs at x = 1988 AB 33 - (B) 2 - (C) 1 - (D) 0 - (E) -2 $$f'(x) = 3x^2 - 6x$$ $$0 = 3 \times (\times - 2)$$ $$x = 0, 2$$ $$t(-5) = -8$$ $t(5) = 8$ $$f(2) = 8$$ $$f(0) = 12$$ $f(4) = 28$ $$f(4) = 28$$ The derivative of $f(x) = \frac{x^4}{3} - \frac{x^5}{5}$ attains its maximum value at x = 1973 AB 10 - (A) -1 - (B) 0 - (D) $\frac{4}{3}$ (E) $\frac{5}{3}$ $$f'(x) = \frac{4}{3}x^3 - x^4 \text{ max of }$$ $$f''(x) = 4x^2 - 4x^3$$ $$0 = 4x^2(1-x)$$ 8) For what value of k will $x + \frac{k}{x}$ have a relative maximum at x = -2? 1969 AB - (A) -4 - (B) -2 - (C) 2 - (D) 4 - (E) None of these $$0 = f'(-2)$$ $$t(x) = 1 - \mu x_{-5}$$ $$f'(-2) = 1 - \frac{K}{4}$$ 9) The graph of f', the derivative of the function f, is shown above. Which of the following statements is true about f? - (A) f is decreasing for $-1 \le x \le 1$. - (B) f is increasing for $-2 \le x \le 0$. - (C) f is increasing for $1 \le x \le 2$. - (D) f has a local minimum at x = 0. - (E) f is not differentiable at x = -1 and x = 1. A particle moves along a straight line. The graph of the particle's position x(t) at time t is 10) shown above for 0 < t < 6. The graph has horizontal tangents at t = 1 and t = 5 and a point of inflection at t = 2. For what values of t is the velocity of the particle increasing? (A) $$0 < t < 2$$ slope (B) $$1 < t < 5$$ (C) $$2 < t < 6$$ concar up (D) $$3 < t < 5$$ only (E) $$1 < t < 2$$ and $5 < t < 6$ Let f be a function defined for all real numbers x. If $f'(x) = \frac{\left| 4 - x^2 \right|}{x - 2}$, then f is decreasing on the AB 13 11) interval (A) $$\left(-\infty,2\right)$$ - (C) (-2,4) (D) $(-2,\infty)$ - (E) $(2,\infty)$ 21 - (A) increasing for x < -2, decreasing for -2 < x < 2, increasing for x > 2 - (B) decreasing for x < 0, increasing for x > 0 - (C) increasing for all x - (D) decreasing for all x - (E) decreasing for x < -2, increasing for -2 < x < 2, decreasing for x > 2 $$f'(x) = 3x^2 + 12$$ $0 = 3(x^2 + 4)$ $0 = 3(x^2 + 4)$ 13) At x = 0, which of the following is true of the function f defined by $f(x) = x^2 + e^{-2x}$? - (A) f is increasing. - (C) f is discontinuous. - (D) f has a relative minimum. - (E) f has a relative maximum. - $f'(x) = 2x 2e^{-2x}$ = -2 What is the x-coordinate of the point of inflection on the graph of $y = \frac{1}{3}x^3 + 5x^2 + 24$? 1998 AB 1 - (A) 5 - (B) 0 - (C) $-\frac{10}{3}$ - (D) -5 - (E) -10 $$y' = x^2 + 10x$$ $y'' = 2x + 10$ $0 = 2x + 10$ The graph of the function $y = x^3 + 6x^2 + 7x - 2\cos x$ changes concavity at $x = \frac{1997 \text{ AB } 77}{\text{Calc}}$ (A) -1.58 (B) -1.63 (C) -1.67 (D) -1.89 (E) -2.33 8 = 3x2 + 12x + 7 + 2sinx y" = 6x + 12 + 2 cosx 0 = 6x + 12 + 2 cos x XX-1.894 If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x = (998 AB) (A) -1 only (B) 2 only (C) -1 and 0 only (D) -1 and 2 only (E) -1, 0, and 2 only $\times = 0$, -1, 2 The function f has first derivative given by $f'(x) = \frac{\sqrt{x}}{1 + x + x^3}$. What is the x-coordinate of the inflection point of the graph of f? (A) 1.008 (B) 0.473 (C) 0 (D) -0.278 (E) The graph of f has no inflection point. *all on calc 1) Take derivative 2) solve w/ I set to zero - The derivative of the function f is given by $f'(x) = x^2 \cos(x^2)$. How many points of inflection does the graph of f have on the open interval (-2, 2)? - (A) One - (B) Two - (C) Three - (D) Four - (E) Five ≠ all on calc > sec # 17 for stops * be aware of interval and be careful of counting & scrolling on calculator - The graph of $y = \frac{-5}{x-2}$ is concave downward for all values of x such that - (A) x < 0 - (B) x < 2 - (C) x < 5 - (D) x > 0 - (E) x > 2 AB 5 $$y = -5(x-2)^{-1}$$ $0 = -10(x-2)^{-3}$ $y' = 5(x-2)^{-2}$ $poi x = 2$ $$y'' = -10(x-2)^{-3}$$ - The graph of $y = 3x^4 16x^3 + 24x^2 + 48$ is concave down for - 4'= 12x3 48x2 + 48x - (A) x < 0(B) x > 0 - (C) x < -2 or $x > -\frac{2}{3}$ - $y'' = 36x^2 96x + 48$ - $0 = 12(3x^2 8x + 4)$ - (D) $x < \frac{2}{3}$ or x > 2 - (E) $\frac{2}{3} < x < 2$ 0 = (3x - 2)(x - 2) $\times = \frac{2}{3}, 2$ For all x in the closed interval [2, 5], the function f has a positive first derivative and a negative second derivative. Which of the following could be a table of values for f? 21) | | 5 16 9 5 16 down | | 3000 | decreasing | | decreasing 3 | | decres in | | | | | | | | |-----|------------------|------|------------|------------|------|--------------|---|-----------|-----|---|------|-----|---|------|--| | | 4 | 12 | * L | 4 | 14 | 5 2 | 4 | 9 | | 4 | 11 | | 4 | 10 | | | | 3 | 9 | 1 | 3 | 11 | 1 | 3 | 12 | | 3 | 14 | | 3 | 13 | | | | 2 | 7 | 1 2 | 2 | 7 | 5.4 | 2 | 16 | | 2 | 16 | | 2 | 16 | | | (A) | x | f(x) | m (B) |) x | f(x) | m (C) | x | f(x) | (D) | x | f(x) | (E) | x | f(x) | | The function f is continuous on the closed interval [2, 4] and twice differentiable on the open interval (2, 4). If f'(3) = 2 and f''(x) < 0 on the open interval (2, 4), which of the following could be a table of values for f? The graph of y = f(x) is shown in the figure above. On which of the following intervals are m pos/ $$\frac{dy}{dx} > 0$$ and $\frac{d^2y}{dx^2} < 0$? function - I. a < x < b - II. b < x < cIII. c < x < d - (A) I only - (B) II only - (C) III only - (D) I and II - (E) II and III AB incressing consideran If y is a function of x such that y' > 0 for all x and y'' < 0 for all x, which of the following could be part of the graph of y = f(x)? 1969 AB 16 - The function f is continuous for $-2 \le x \le 1$ and differentiable for -2 < x < 1. If f(-2) = -5 and f(1) = 4, which of the following statements could be false? - (A) There exists c, where -2 < c < 1, such that f(c) = 0. Continuous function - B) There exists c, where -2 < c < 1, such that f'(c) = 0. not governanteed to have max/min/c - (C) There exists c, where -2 < c < 1, such that f(c) = 3. Continuous function - (D) There exists c, where -2 < c < 1, such that f'(c) = 3. - (E) There exists c, where $-2 \le c \le 1$, such that $f(c) \ge f(x)$ for all x on the closed interval $-2 \le x \le 1$. con through *MVT $$f'(c) = \frac{f(1) - f(-2)}{1 - (-2)} = \frac{4 - (-5)}{3} = \frac{9}{3} = 3$$ by EVT There exists a $$ce[-2,1]$$ such that $f'(c)=3$ 2008 AB 89 calc The function f is continuous for $-2 \le x \le 2$ and f(-2) = f(2) = 0. If there is no c, where -2 < c < 2, for which f'(c) = 0, which of the following statements must be true? (B) For $$-2 < k < 2$$, $f'(k) < 0$. (C) For $$-2 < k < 2$$, $f'(k)$ exists. (D) For -2 < k < 2, f'(k) exists, but f' is not continuous. why we check for f' undefined If y = 2x - 8, what is the minimum value of the product xy? 1997 AB (A) -16 (B) -8 (C) -4 (D) 0 (E) 2 M = x(2x - 8) $= 2x^2 - 8x$ M'= 4x -8 0 = 4x - 8 M = -8 The point on the curve $x^2 + 2y = 0$ that is nearest the point $\left(0, -\frac{1}{2}\right)$ occurs where y is 28) (B) 0 (C) $-\frac{1}{2}$ (D) -1 (E) none of the above $D = (x-0)^2 + (y+1/2)^2$ y= -x2 $D = \sqrt{\frac{2}{x^2 + (-\frac{x^2}{2} + \frac{1}{2})^2}}$ M = x2 + (-1/2 x2 + 1/2)2 M= 2x + 2(-1/2 x2 + 1/2)(-x) $0 = 2x + x^3 - x$ $0 = X + X^3 = X(1 + X^2)$ Which is the best of the following polynomial approximations to $\cos 2x$ near x = 0? 29) AB 37 (A) $1+\frac{x}{2}$ (B) 1+x (C) $1-\frac{x^2}{2}$ (D) $1-2x^2$ (E) $1-2x+x^2$ +(x) = co> 2x f(0)=1 Ignore f'(0) = -25100 The function f is twice differentiable with f(2)=1, f'(2)=4, and f''(2)=3. What is the 2) value of the approximation of f(1.9) using the line tangent to the graph of f at x = 2? $$L(x) = f(2) + f'(2) (a - 2)$$ $$= 1 + 4(0.1)$$ - The approximate value of $y = \sqrt{4 + \sin x}$ at x = 0.12, obtained from the tangent to the graph at 1969 x = 0, is AB 36 - (A) 2.00 - (B) 2.03 - (C) 2.06 - (D) 2.12 - (E) 2.24 $$\Gamma(0.15) = 5 + 0.52(0.15).0300$$ - The radius r of a sphere is increasing at the uniform rate of 0.3 inches per second. At the instant 32) when the surface area S becomes 100π square inches, what is the rate of increase, in cubic inches per second, in the volume V? $\left(S = 4\pi r^2 \text{ and } V = \frac{4}{3}\pi r^3\right)$ - (A) 10π - (B) 12π - (C) 22.5π - (D) 25π dV = 4TT r2 dr dt (E) 30π 100m = 4m r2 $$\frac{dv}{dt} = 4\pi (5)^{2} (6.3)$$ = 100 π $\frac{3}{10}$ (A) $$\frac{1}{2}\pi$$ (E) $$108\pi$$ $$\frac{dr}{dt} = \frac{1}{2}$$ cm/sec $$\frac{dh}{dt} = \frac{1}{2}$$ cm/sec $$V = \frac{1}{3} \pi r^2 h$$ $$\frac{dv}{dt} = \frac{1}{3} \pi \left[2rh \frac{dr}{dt} + r^2 \frac{dh}{dt} \right]$$ $$= \frac{1}{3} \pi \left(2(6)(9)(1/2) + 6^{2}(1/2) \right)$$ $$= \frac{1}{3}\pi \left(54 + 18\right) = \frac{72}{3}\pi$$ The radius of a circle is increasing at a constant rate of 0.2 meters per second. What is the rate of increase in the area of the circle at the instant when the circumference of the circle is 20π meters? (A) $$0.04\pi \text{ m}^2/\text{sec}$$ (B) $$0.4\pi \text{ m}^2/\text{sec}$$ (C) $$4\pi \text{ m}^2/\text{sec}$$ (D) $$20\pi \text{ m}^2/\text{sec}$$ (E) $$100\pi \text{ m}^2/\text{sec}$$ $$\frac{dr}{dt} = 0.2$$ $$\frac{dA}{dt} = ?$$ Calc - The sides of the rectangle above increase in such a way that $\frac{dz}{dt} = 1$ and $\frac{dx}{dt} = 3\frac{dy}{dt}$. At the instant when x = 4 and y = 3, what is the value of $\frac{dx}{dt}$? - (A) $\frac{1}{3}$ - (B) 1 - (C) 2 - (D) $\sqrt{5}$ - (E) 5 $$x^2 + y^2 = z^2$$ $$\frac{2 \times d \times}{dt} + \frac{2y}{dt} = \frac{2z}{dt} = \frac{dz}{dt}$$ $$\frac{dt}{8} + 2\frac{dt}{dx} = 10$$ | | v | | | | |--|---|--|--|--| , | | | | | | | | | |