1. Write out the first four terms of the Maclaurin series of $f(x)$ if

$$
f(0)=2, f^{\prime}(0)=3, f^{\prime \prime}(0)=4, f^{(3)}(0)=12
$$

2. Find the terms through degree 4 of the Maclaurin series of $f(x)=\frac{\sin x}{1-x}$
3. Find the Taylor Series centered at $c=-1$ for $f(x)=e^{3 x}$
4. Show that for $|x|<1 \tan ^{-1} x=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots$

$$
\text { Hint: } \frac{d}{d x} \tan h^{-1} x=\frac{1}{1-x^{2}}
$$

5. Let $F(x)=\int_{0}^{x} \frac{\sin t d t}{t}$. Show that

$$
F(x)=x-\frac{x^{3}}{3 \cdot 3!}+\frac{x^{5}}{5 \cdot 5!}-\frac{x^{7}}{7 \cdot 7!}+\ldots
$$

Evaluate $F(1)$ to three decimal places.
6. Express the definite integral below as an infinite series and find its value. (Expand the infinite series to 4 terms to find the value.)

$$
\int_{0}^{1} \cos \left(x^{2}\right) d x
$$

