Exponential Growth and Decay MC

1. The weight of a population of yeast is given by a differentiable function y, where $y(t)$ is measured in grams and t is measured in days. The weight of the yeast population increases according to the equation $\frac{d y}{d t}=k y$, where k is a constant. At time $t=0$, the weight of the yeast population is 120 grams and is increasing at the rate of 24 grams per day. Which of the following is an expression for $y(t)$?
(A) $120 \mathrm{e}^{24 t}$
(B) $120 e^{t / 5}$
(C) $e^{t / 5}+119$
(D) $24 t+120$
2. A puppy weighs 2.0 pounds at birth and 3.5 pounds two months later. If the weight of the puppy during its first 6 months is increasing at a rate proportional to its weight, then how much will the puppy weigh when it is 3 months old?
(A) 4.2 pounds
(B) 4.6 pounds
(C) 4.8 pounds
(D) 5.6 pounds
(E) 6.5 pounds
3. The population P of a city grows according to the differential equation $\frac{d P}{d t}=k P$, where k is a constant and t is measured in years. If the population of the city doubles every 12 years, what is the value of k ?

Exponential Growth and Decay MC

(A) 0.058
(B) 0.061
(c) 0.167
(D) 0.693
(E) 8.318
4. Population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 10 years, then the value of k is
(A) 0.069
(B) 0.200
(C) 0.301
(D) 3.322
(E) 5.000
5. During a certain epidemic, the number of people that are infected at any time increases at a rate proportional to the number of people that are infected at that time. If 1,000 people are infected when the epidemic is first discovered, and 1,200 are infected 7 days later, how many people are infected 12 days after the epidemic is first discovered?

Exponential Growth and Decay MC

(A) 343
(B) 1,343
(C) 1,367
(D) 1,400
(E) 2,057
6. Bacteria in a certain culture increase at a rate proportional to the number present. If the number of bacteria doubles in three hours, in how many hours will the number of bacteria triple?
(A) $3 \ln 3 / \ln 2$
(B) $2 \ln 3 / \ln 2$
(C) $\ln 3 / \ln 2$
(D) $\ln (27 / 2)$
(E) $\ln (9 / 2)$
7. Extreme heat applied to a colony of microorganisms causes the size P of the colony, measured in grams, to decrease according to the exponential decay model $\frac{d P}{d t}=-0.4 P$, where the time t is measured in hours. The size Q of a second colony of microorganisms, also measured in grams, decreases at the constant rate of 1 gram per hour according to the linear model $\frac{d Q}{d t}=-1$. If at time $t=0$ the first colony has size $P(0)=2$ and the second colony has size $Q(0)=3$, at what time will both colonies have the same size?

Exponential Growth and Decay MC

(A) 1.437
(B) 1.667
(c) 2.156
(D) 2.654
8. A kitten weighs 85 grams at birth. During the first four weeks after the kitten's birth, its weight in grams is given by the function W that satisfies the differential equation $\frac{d W}{d t}=k W$, where t is measured in days and k is some positive constant. Which of the following could be an expression for $W(t)$?
(A) $85 e^{0.059 t}$
(B) $4 e^{0.162 t}+81$
(C) $13 t+85$
(D) $0.466 t^{2}+85$
9. During a chemical reaction, the rate of change of the amount of the chemical remaining is proportional to the amount remaining. At time $t=0$, the amount of the chemical is 12 moles. At time $t=4$, the amount of the chemical is 4 moles. At what time t is the amount of the chemical 3 moles? (A mole is a unit of measure used in chemistry.)

Exponential Growth and Decay MC

(A) $3 \sqrt{2}$
(B) $\frac{9}{2}$
(C) $\frac{4 \ln 3}{\ln 4}$
(D) $\frac{4 \ln 4}{\ln 3}$
10. The quantity R, in grams, of a certain radioactive substance decreases according to the exponential decay model $\frac{d R}{d t}=-0.05 R$, where t is measured in seconds. During an experiment, a scientist determines that the rate of decay of a second substance with the quantity S, in grams, can be represented by a linear model $\frac{d S}{d t}=-4$, where t is measured in seconds. If at time $t=0$, $R(0)=100$ and $S(0)=125$, at what time t, in seconds, will there be equal quantities of both substances?
(A) $t=6.318$
(B) $t=6.329$
(C) $t=23.548$
(D) $t=31.197$
11. During optimal conditions, the rate of change of the population of a certain organism is proportional to the population at time t, in hours. At time $t=0$ hours, the population is 300. At time $t=24$ hours, the population is 1000. At what time t is the population 500 ?

Exponential Growth and Decay MC

(A) $t=\frac{24 \sqrt{2}}{\sqrt{7}}$
(B) $t=\frac{48}{7}$
(C) $t=\frac{24 \ln 500}{\ln 1000}$
(D) $t=\frac{\ln \left(\frac{5}{3}\right)}{\frac{1}{24} \ln \left(\frac{10}{3}\right)}$
12. A dose of 400 milligrams of a drug is administered to a patient. The amount of the drug, in milligrams, in the person's bloodstream at time t, in hours, is given by $A(t)$. The rate at which the drug leaves the bloodstream can be modeled by the differential equation $\frac{d A}{d t}=k A$, where k is a constant. Which of the following could be an expression for $A(t)$?
(A) $A(t)=400 e^{-0.3 t}$
(B) $A(t)=e^{-0.3 t}+399$
(C) $A(t)=-3 t+400$
(D) $A(t)=-1.5 t^{2}+400$

